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Abstract A thermodynamic model for solids under pressure is developed by assuming the 
universal equation of  state and thaI under zero pressure the free energy i s  equal to the harmonic 
crystal (Debye) free energy. The model is applied to gald. In the case of nanocrystals this 
model reproduces the observed enhancement o f  the isobaric heat capacity and o f  the thermal 
expansion. Our model calculations are free of the ambiguities and inconsistencies connected 
with the GNneisen equation, which was used in previous theoretical work. 

1. Introduction 

Recently, there has been geat interest in nanocrystals, witness a recent review with 396 
references [l]. These solids are of basic and technological interest since their properties are 
appreciably different from those of single crystals or those in polycrystalline samples. For 
example, the isobaric specific heat [Z], C,, and the thermal expansion coefficient [31, a, of 
metallic nanocrystals are enhanced and very rapidly with the excess volume of the solid 
occupied by the grain boundaries. The fact that the grain boundkes occupy a considerable 
portion of the volume of the nanocrystal leads to appreciably altered properties compared 
to ‘macro’ crystals. 

Fecht’s calculation [4], based on the universal equation of state (EOS) of Rose et a! [5] 
and Slater’s expression [6] for the Gruneisen parameter, y ,  predicts that both C, and a 
vary rapidly with excess volume. This calculation also predicts the unphysical result that 
the entropy diverges at a critical value of excess volume. Wagner [7], using the Debye- 
Gruneisen model and the DugdaleMacDonald formula [SI for y obtains enhancement of 
Ci and (Y without divergence of the entropy and the Gruneisen parameter. 

In view of the uncertainty and arbitrariness involved in the definition of y ,  we use 
in this paper a thermodynamically consistent model for heat capacity, thermal expansion, 
entropy, etc without making use of the Gruneisen parameter. The method is an application 
and extention of Smith‘s work [9], which concerns itself with the low-temperature quantum 
regime, to all temperatures. The model is based upon the finite-temperature Vinet et a1 
universal EOS [5 ] ,  which has been extensively tested on isothermal pressure-volume data 
for numerous metallic and covalent solids. Smith [9] integrated the universal EOS [5]  to 
obtain an excess free energy. Our approach is to be contrasted to previous calculations, 
which started from the universal EOS but also involved further assumptions not necessarily 
consistent with the EOS. For example, Fecht [4] used both the universal EOS 151 and the 
Gruneisen EOS [lo] and obtained a diverging entropy in violation of statistical mechanics. 
When our model is applied to metallic nanocrystals it yields the experimentally observed 
enhancement [Z, 31 of the isobaric specific heat and thermal expansion, but no unphysical 
divergence of the entropy. 
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2. The thermodynamic model 

The first step in our development is to obtain the fundamental thermodynamic equation, 
F = F(V, T ) ,  from the universal EOS: 

M K a u m n  and H Schlosser 

P = 3B0[(l- ~ ) / x ~ ~ e x p [ v ( l  - x)1 (1) 

where F is the Helmholtz free energy, V is the volume, T is the temperature, p is 
the pressure, x = ( V / V O ) ~ ~ ,  Bo is the zero-pressure isothermal bulk modulus, and 
v = l.S[(aB/ap),=o - 11. Note that VO, Bo, and 7 are functions of temperature only. 
Since p = -(a F /aV)r  one may obtain the free energy by integrating the equation of state 
[9]. Now assuming that at zero pressure F(V ,  T) is equal to the free energy of the harmonic 
crystal (Debye model), FD, we find 

V 
F(V, T )  = FD(T) - 1 pdV.  (2) 

vo 
(This implies that C,,(T,p = 0) is equal to the hannonic Debye heat capacity at all 
temperatures; alternatively, one could use experimental values of the zero-pressure Gibbs 
potential for F(V0, T).) Substituting (1) and integrating yields the following fundamental 
equation: 

F(V. T) = FD(T) + 9voBo(l+ - x )  - lIexp[v(l - x ) l } / v 2 .  (3) 

Note that, consistent with the €os (I), the Debye free energy, FD, must be a function 
of temperature only [Ill.  In (3) the volume dependence originates solely from the 
universal EOS. This differs from the Gruneisen approach where one assumes that the Debye 
temperature depends on volume. Next, the entropy is obtained from S = -(aF/aT)v. 
Thus, 

W, T )  = SD(T) - -[9VoB0/~~1 (1 + [ V U  - x )  - 11exp[v(l- x)l) 

(4) 

where cuo is the zero-pressure. thermal expansion coefficient and 5'~ 3 -dFo/dT. The heat 
capacity at constant volume is obtained from CV = T(aS/aT)v. Thus, 

Cv = CO - T-[9VoBo/v21(1+ [?(I - x )  - llexp[q(l -x)ll 

I,", 1 
- ~ ~ , ~ o / r 1 2 1 [ v ( 1 -  x ) ~  [ 2~ - x )  + (vxcuo/3) exp[v(I -X)I I 
d2 

dT2 
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(alnV/aT), and the isothermal bulk modulus The thermal expansion coefficient 01 

BT = -(ap/a In V ) T  are obtained directly from the EOS (1): 
.~ 

[2 + ( q  - 1)x - qxzl (6) 

~BT = B0[2 + (q  - 1)x - qx2]exp[q(l - x)]/x2. (7) 

Finally, the isobaric heat capacity, C,,, and the adiabatic bulk modulus, Bs, are obtained by 
substituting CV, a, and BT from (5), (6), and (7) into the thermodynamic identities 

c,, = cv + T V O ~ ~ B ~  

Bs = Br[1+ TVct2Br/Cvl. 

We note that all the above formulae for thermodynamic quantities are valid at all 
temperatures, while the excess isochoric specific heat AC” calculated by Smith [91 is only 
valid at very low temperature (in the quantum regime). 

3. Application 

We have applied this model to gold. The input data, which follow, are the temperature 
dependence of the equilibrium volume VO obtained from thermal expansion measurements 
[12] and polynomial fits of the equilibrium bulk modulus BO values [13] and of q values at 
temperatures between 300 K and 800 K. 

Vo(T)/V&93) = 1 + 4.353 x lO-’(T - 293) + 3.639 x lO-’(T - 293)’ 

+ 5.043 x IO-”(T - 293)3 (10) 

(11) 

(12) 

‘ 6  2 Bo(T) = 180.83 - 0.0474T - 2.47 x 10- T 

q (T)  =8.604+7.111 x 10-4T+3.664x 10-’T2 

where BO is in gigapascals and T is in kelvin. The Debye temperature is 170 K [ 111. 
The isothermal bulk modulWBr versus x = (V/Vo(T))1/3 at room temperature is 

shown in figure 1. Note that BT vanishes at x m 1.09, signalling a thermodynamic 
instability. At the instability 01 = 00 and C,, = W. This follows from (6), (7), and (8). 
which imply that close to the instability BT z ( x - X I ) ,  ct z (x  - X I ) - ’ ,  and C,, m ( x - x $ ’ ,  
where X I  is the value of the parameter x at the instability. The dependences of 01 and C,, 
on x at room temperature are shown in figures 2 and 3, respectively. The value of XI is 
obtained by setting the right-hand side of (7) equal to zero: 

XI =+I? - 1 + .J[(q - 1)’+ 811)1/2~. (13) 

The parameter q varies~between about six and ten for metallic solids previously analysed 
by the universal EOS [5].  Hence, (13) yields values for the linear expansion parameter at 
the instability, X I ,  in the range of 1.08-1.13. This range of values of XI is comparable 
to Wagner’s estimate for Pd (x  =~1.09). Normally such an instability is associated with 
a phase transition. In the T ,  p plane the thermodynamic instability occurs at the line 
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p = p l ( T ) ,  which is shown in figure 4, and which was determined by using (I), (12), 
and (13). The proximity of this instability is responsible [4] for the observed enhancement 
of C,, in nanocrystals [2].  These materials have a lower density due to the non-negligible 
volume fraction of grain boundaries, i.e. x = (V/Vo)’P > 1. In figure 5 we show the 
temperature dependence of C, for x = 1 (macrocrystal) and for x = 1.075 (nanocrystal). 
The enhancement in C, is about 40%, not unlike the experimental [2] C,, for Pd. Finally, 
in figure 6, we plot the excess entropy, AS =- S - S,, as given in (4) as a function of 
x at room temperature. There is no unphysical divergence of AS at the thermodynamic 
instability, unlike Fecht’s prediction [4], and consistent with Wagner’s [7] calculation. We 
note that the main approximation in this analysis is that the free energy of a nanocrystal is 
the same function of V and T as that of a macrocrystal. 

M Kaufman and H Schlosser 

Figurr 1. The isothermal bulk modulus. B T .  against 
x = ( V /  !4p3; T = 300 K. 

r---- 0.0025 

i 03 7.0 X 

Figure 2. The volume expansion coefficient. CY, against 
x = (V / !4 ) ’?  T = 3W K. 

Figure 3. The isobaric heat capacity, C,, (in units of 
ke). against x = ( V / V , ) ’ f 3 ;  T = 300 K. 

Figure 4. The instability line on the T, p plane; the 
solid is stable above the line, 
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Figure 5. The isobaric heat capacity, C, (in units of 
ks), against T for x = 1 (mcmrystal) and x = 1.075 
(nanocrysgl). 

Figure 6. The excess entropy, AS = S - SD (in units 
of &a), against x = ( V /  Vu]"'; T = 300 K. 

4. Conclusion 

In conclusion, we have shown how to calculate the specific beats, the thermal expansion 
coefficient, the entropy, etc in a thermodynamically consistent way directly from the finite- 
temperature universal equation of state without use of the Gruneisen equation. We have 
found that the enhancements of C, and CY for metallic nanocrystals are in good agreement 
with experiment. The entropy remains finite, in agreement with expectations based on 
general statistical mechanics. Direct evidence supporting the concept of lower effective 
density due to grain boundaries in nanocrystals is provided by recent experimental studies 
f141 of nanocrystalline CdSe. It was observed that the transition pressure between the 
wurtzite and rock salt structures increases with decreasing grain size. 
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